Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nucleic Acids Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499490

RESUMO

Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.

2.
Nat Commun ; 14(1): 7882, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036565

RESUMO

Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Cálcio , Instabilidade Genômica , Hidroxiureia/farmacologia
3.
Cell Rep Med ; 4(11): 101247, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37863059

RESUMO

Homologous recombination (HR)-mediated DNA repair is a prerequisite for maintaining genome stability. Cancer cells displaying HR deficiency (HRD) are selectively eliminated by poly(ADP-ribose) polymerase inhibitors (PARPis). To date, sequencing of HR-associated genes and analyzing genome instability have been used as clinical predictions for PARPi therapy. However, these genetic tests cannot reflect dynamic changes in the HR status. Here, we have developed a virus- and activity-based functional assay to quantify real-time HR activity directly. Instead of focusing on a few HR-associated genes, our functional assay detects endpoint HR activity and establishes an activity threshold for identifying HRD across cancer types, validated by PARPi sensitivity and BRCA status. Notably, this fluorescence-based assay can be applied to primary ovarian cancer cells from patients to reflect their level of HRD, which is associated with survival benefits. Thus, our work provides a functional test to predict the response of primary cancer cells to PARPis.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Recombinação Homóloga/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
4.
Nucleic Acids Res ; 51(21): 11717-11731, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37843130

RESUMO

Fork reversal is a conserved mechanism to prevent stalled replication forks from collapsing. Formation and protection of reversed forks are two crucial steps in ensuring fork integrity and stability. Five RAD51 paralogs, namely, RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, which share sequence and structural similarity to the recombinase RAD51, play poorly defined mechanistic roles in these processes. Here, using purified BCDX2 (RAD51BCD-XRCC2) and CX3 (RAD51C-XRCC3) complexes and in vitro reconstituted biochemical systems, we mechanistically dissect their functions in forming and protecting reversed forks. We show that both RAD51 paralog complexes lack fork reversal activities. Whereas CX3 exhibits modest fork protection activity, BCDX2 significantly synergizes with RAD51 to protect DNA against attack by the nucleases MRE11 and EXO1. DNA protection is contingent upon the ability of RAD51 to form a functional nucleoprotein filament on DNA. Collectively, our results provide evidence for a hitherto unknown function of RAD51 paralogs in synergizing with RAD51 nucleoprotein filament to prevent degradation of stressed replication forks.


Assuntos
Replicação do DNA , Rad51 Recombinase , Linhagem Celular , Cromossomos/metabolismo , DNA/genética , DNA/metabolismo , Nucleoproteínas/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Humanos
5.
Nat Commun ; 14(1): 4993, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591853

RESUMO

ATP-dependent RAD51 recombinases play an essential role in eukaryotic homologous recombination by catalyzing a four-step process: 1) formation of a RAD51 single-filament assembly on ssDNA in the presence of ATP, 2) complementary DNA strand-exchange, 3) ATP hydrolysis transforming the RAD51 filament into an ADP-bound disassembly-competent state, and 4) RAD51 disassembly to provide access for DNA repairing enzymes. Of these steps, filament dynamics between the ATP- and ADP-bound states, and the RAD51 disassembly mechanism, are poorly understood due to the lack of near-atomic-resolution information of the ADP-bound RAD51-DNA filament structure. We report the cryo-EM structure of ADP-bound RAD51-DNA filaments at 3.1 Å resolution, revealing a unique RAD51 double-filament that wraps around ssDNA. Structural analysis, supported by ATP-chase and time-resolved cryo-EM experiments, reveals a collapsing mechanism involving two four-protomer movements along ssDNA for mechanical transition between RAD51 single- and double-filament without RAD51 dissociation. This mechanism enables elastic change of RAD51 filament length during structural transitions between ATP- and ADP-states.


Assuntos
Citoesqueleto , DNA de Cadeia Simples , Subunidades Proteicas , DNA Complementar , Recombinação Homóloga , Trifosfato de Adenosina
6.
Nucleic Acids Res ; 51(9): 4398-4414, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36999631

RESUMO

The long non-coding telomeric RNA transcript TERRA, in the form of an RNA-DNA duplex, regulates telomere recombination. In a screen for nucleases that affects telomere recombination, mutations in DNA2, EXO1, MRE11 and SAE2 cause severe delay in type II survivor formation, indicating that type II telomere recombination is mediated through a mechanism similar to repairing double-strand breaks. On the other hand, mutation in RAD27 results in early formation of type II recombination, suggesting that RAD27 acts as a negative regulator in telomere recombination. RAD27 encodes a flap endonuclease that plays a role in DNA metabolism, including replication, repair and recombination. We demonstrate that Rad27 suppresses the accumulation of the TERRA-associated R-loop and selectively cleaves TERRA of R-loop and double-flapped structures in vitro. Moreover, we show that Rad27 negatively regulates single-stranded C-rich telomeric DNA circles (C-circles) in telomerase-deficient cells, revealing a close correlation between R-loop and C-circles during telomere recombination. These results demonstrate that Rad27 participates in telomere recombination by cleaving TERRA in the context of an R-loop or flapped RNA-DNA duplex, providing mechanistic insight into how Rad27 maintains chromosome stability by restricting the accumulation of the R-loop structure within the genome.


Assuntos
Endonucleases Flap , Estruturas R-Loop , Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA de Cadeia Simples , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Recombinação Genética , RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo
7.
PLoS Genet ; 18(12): e1010545, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36512630

RESUMO

Replication fork reversal which restrains DNA replication progression is an important protective mechanism in response to replication stress. PARP1 is recruited to stalled forks to restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism through which PARP1 participates in DNA replication restraint remains unclear. Here, we found novel protein-protein interactions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction among these DNA translocases. Although HLTF and SHPRH share structural and functional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We further identified the ability of SHPRH to restrain DNA replication upon replication stress, indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA translocation. Although hydroxyurea (HU) and MMS induce different types of replication stress, they both induce common DNA replication restraint mechanisms independent of intra-S phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruitment to damaged forks, preventing fork collapse and facilitating DNA repair.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA/genética , Dano ao DNA/genética
8.
Bioorg Med Chem ; 70: 116923, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841829

RESUMO

The ATP binding sites of many enzymes are structurally related, which complicates their development as therapeutic targets. In this work, we explore a diverse set of ATPases and compare their ATP binding pockets using different strategies, including direct and indirect structural methods, in search of pockets attractive for drug discovery. We pursue different direct and indirect structural strategies, as well as ligandability assessments to help guide target selection. The analyses indicate human RAD51, an enzyme crucial in homologous recombination, as a promising, tractable target. Inhibition of RAD51 has shown promise in the treatment of certain cancers but more potent inhibitors are needed. Thus, we design compounds computationally against the ATP binding pocket of RAD51 with consideration of multiple criteria, including predicted specificity, drug-likeness, and toxicity. The molecules designed are evaluated experimentally using molecular and cell-based assays. Our results provide two novel hit compounds against RAD51 and illustrate a computational pipeline to design new inhibitors against ATPases.


Assuntos
Descoberta de Drogas , Recombinação Homóloga , Adenosina Trifosfatases , Trifosfato de Adenosina/química , Sítios de Ligação , Humanos , Ligação Proteica
9.
Nat Commun ; 12(1): 6412, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741010

RESUMO

Replication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.


Assuntos
Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , Rad51 Recombinase/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Biomed Sci ; 28(1): 81, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819065

RESUMO

BACKGROUND: RAD51-dependent homologous recombination (HR) is one of the most important pathways for repairing DNA double-strand breaks (DSBs), and its regulation is crucial to maintain genome integrity. Elp1 gene encodes IKAP/ELP1, a core subunit of the Elongator complex, which has been implicated in translational regulation. However, how ELP1 contributes to genome maintenance is unclear. METHODS: To investigate the function of Elp1, Elp1-deficient mouse embryonic fibroblasts (MEFs) were generated. Metaphase chromosome spreading, immunofluorescence, and comet assays were used to access chromosome abnormalities and DSB formation. Functional roles of Elp1 in MEFs were evaluated by cell viability, colony forming capacity, and apoptosis assays. HR-dependent DNA repair was assessed by reporter assay, immunofluorescence, and western blot. Polysome profiling was used to evaluate translational efficiency. Differentially expressed proteins and signaling pathways were identified using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach. RESULTS: Here, we report that Elp1 depletion enhanced genomic instability, manifested as chromosome breakage and genotoxic stress-induced genomic DNA fragmentation upon ionizing radiation (IR) exposure. Elp1-deficient cells were hypersensitive to DNA damage and exhibited impaired cell proliferation and defective HR repair. Moreover, Elp1 depletion reduced the formation of IR-induced RAD51 foci and decreased RAD51 protein levels. Polysome profiling analysis revealed that ELP1 regulated RAD51 expression by promoting its translation in response to DNA damage. Notably, the requirement for ELP1 in DSB repair could be partially rescued in Elp1-deficient cells by reintroducing RAD51, suggesting that Elp1-mediated HR-directed repair of DSBs is RAD51-dependent. Finally, using proteome analyses, we identified several proteins involved in cancer pathways and DNA damage responses as being differentially expressed upon Elp1 depletion. CONCLUSIONS: Our study uncovered a molecular mechanism underlying Elp1-mediated regulation of HR activity and provides a novel link between translational regulation and genome stability.


Assuntos
Quebra Cromossômica , Dano ao DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Biossíntese de Proteínas/genética , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/genética , Animais , Fibroblastos , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Rad51 Recombinase/metabolismo
11.
J Mol Evol ; 89(8): 554-564, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341836

RESUMO

Gene duplication is a fundamental process that has the potential to drive phenotypic differences between populations and species. While evolutionarily neutral changes have the potential to affect phenotypes, detecting selection acting on gene duplicates can uncover cases of adaptive diversification. Existing methods to detect selection on duplicates work mostly inter-specifically and are based upon selection on coding sequence changes, here we present a method to detect selection directly on a copy number variant segregating in a population. The method relies upon expected relationships between allele (new duplication) age and frequency in the population dependent upon the effective population size. Using both a haploid and a diploid population with a Moran Model under several population sizes, the neutral baseline for copy number variants is established. The ability of the method to reject neutrality for duplicates with known age (measured in pairwise dS value) and frequency in the population is established through mathematical analysis and through simulations. Power is particularly good in the diploid case and with larger effective population sizes, as expected. With extension of this method to larger population sizes, this is a tool to analyze selection on copy number variants in any natural or experimentally evolving population. We have made an R package available at https://github.com/peterbchi/CNVSelectR/ which implements the method introduced here.


Assuntos
Diploide , Duplicação Gênica , Alelos , Fenótipo , Seleção Genética
12.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389685

RESUMO

Meiotic recombination plays dual roles in the evolution and stable inheritance of genomes: Recombination promotes genetic diversity by reassorting variants, and it establishes temporary connections between pairs of homologous chromosomes that ensure their future segregation. Meiotic recombination is initiated by generation of double-strand DNA breaks (DSBs) by the conserved topoisomerase-like protein Spo11. Despite strong conservation of Spo11 across eukaryotic kingdoms, auxiliary complexes that interact with Spo11 complexes to promote DSB formation are poorly conserved. Here, we identify DSB-3 as a DSB-promoting protein in the nematode Caenorhabditis elegans Mutants lacking DSB-3 are proficient for homolog pairing and synapsis but fail to form crossovers. Lack of crossovers in dsb-3 mutants reflects a requirement for DSB-3 in meiotic DSB formation. DSB-3 concentrates in meiotic nuclei with timing similar to DSB-1 and DSB-2 (predicted homologs of yeast/mammalian Rec114/REC114), and DSB-1, DSB-2, and DSB-3 are interdependent for this localization. Bioinformatics analysis and interactions among the DSB proteins support the identity of DSB-3 as a homolog of MEI4 in conserved DSB-promoting complexes. This identification is reinforced by colocalization of pairwise combinations of DSB-1, DSB-2, and DSB-3 foci in structured illumination microscopy images of spread nuclei. However, unlike yeast Rec114, DSB-1 can interact directly with SPO-11, and in contrast to mouse REC114 and MEI4, DSB-1, DSB-2, and DSB-3 are not concentrated predominantly at meiotic chromosome axes. We speculate that variations in the meiotic program that have coevolved with distinct reproductive strategies in diverse organisms may contribute to and/or enable diversification of essential components of the meiotic machinery.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Quebras de DNA de Cadeia Dupla , Meiose/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Engenharia Genética , Genoma , Oócitos/efeitos da radiação
13.
Neurotoxicol Teratol ; 85: 106962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33636300

RESUMO

Public health campaigns broadcast the link between heavy alcohol consumption during pregnancy and physical, cognitive, and behavioral birth defects; however, they appear less effective in deterring moderate consumption prevalent in women who are pregnant or of childbearing age. The incidence of mild Fetal Alcohol Spectrum Disorders (FASD) is likely underestimated because the affected individuals lack physical signs such as retarded growth and facial dysmorphology and cognitive/behavioral deficits are not commonly detected until late childhood. Sensory information processing is distorted in FASD, but alcohol's effects on the development of axons that mediate these functions are not widely investigated. We hypothesize that alcohol exposure alters axon growth and guidance contributing to the aberrant connectivity that is a hallmark of FASD. To test this, we administered alcohol to pregnant dams from embryonic day (E) 7.5 to 14.5, during the time that axons which form the major forebrain tracts are growing. We found that moderate alcohol exposure had no effect on body weight of E15.5 embryos, but significantly increased the length of L1+ axons. To investigate a possible cause of increased L1+ axon length, we investigated the number and distribution of corridor cells, one of multiple guidance cues for thalamocortical axons which are involved in sensory processing. Alcohol did not affect corridor cell number or distribution at the time when thalamocortical axons are migrating. Future studies will investigate the function of other guidance cues for thalamocortical axons, as well as lasting consequences of axon misguidance with prenatal alcohol exposure.


Assuntos
Axônios/efeitos dos fármacos , Antígeno CD56/metabolismo , Etanol/efeitos adversos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Feminino , Transtornos do Espectro Alcoólico Fetal/patologia , Masculino , Camundongos , Gravidez
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593897

RESUMO

Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae (Sc) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and, like ScDmc1, TrRad51 possesses better mismatch tolerance than ScRad51 during homologous recombination. Our results also indicate that the ancestral TrRad51 evolved to acquire ScDmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Recombinação Homóloga , Hypocreales/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Hypocreales/genética , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Nat Commun ; 12(1): 115, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446654

RESUMO

Both high-fidelity and mismatch-tolerant recombination, catalyzed by RAD51 and DMC1 recombinases, respectively, are indispensable for genomic integrity. Here, we use cryo-EM, MD simulation and functional analysis to elucidate the structural basis for the mismatch tolerance of DMC1. Structural analysis of DMC1 presynaptic and postsynaptic complexes suggested that the lineage-specific Loop 1 Gln244 (Met243 in RAD51) may help stabilize DNA backbone, whereas Loop 2 Pro274 and Gly275 (Val273/Asp274 in RAD51) may provide an open "triplet gate" for mismatch tolerance. In support, DMC1-Q244M displayed marked increase in DNA dynamics, leading to unobservable DNA map. MD simulation showed highly dispersive mismatched DNA ensemble in RAD51 but well-converged DNA in DMC1 and RAD51-V273P/D274G. Replacing Loop 1 or Loop 2 residues in DMC1 with RAD51 counterparts enhanced DMC1 fidelity, while reciprocal mutations in RAD51 attenuated its fidelity. Our results show that three Loop 1/Loop 2 residues jointly enact contrasting fidelities of DNA recombinases.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Conformação Proteica em alfa-Hélice , Rad51 Recombinase/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
16.
EMBO J ; 40(2): e103654, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33210317

RESUMO

Degradation and collapse of stalled replication forks are main sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse are not well understood. Here, we report that human CST (CTC1-STN1-TEN1) proteins, which form a single-stranded DNA-binding complex, localize at stalled forks and protect stalled forks from degradation by the MRE11 nuclease. CST deficiency increases MRE11 binding to stalled forks, leading to nascent-strand degradation at reversed forks and ssDNA accumulation. In addition, purified CST complex binds to 5' DNA overhangs and directly blocks MRE11 degradation in vitro, and the DNA-binding ability of CST is required for blocking MRE11-mediated nascent-strand degradation. Our results suggest that CST inhibits MRE11 binding to reversed forks, thus antagonizing excessive nascent-strand degradation. Finally, we uncover that CST complex inactivation exacerbates genome instability in BRCA2 deficient cells. Collectively, our findings identify the CST complex as an important fork protector that preserves genome integrity under replication perturbation.


Assuntos
Replicação do DNA/genética , Proteína Homóloga a MRE11/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/genética , Proteínas de Ligação a Telômeros/metabolismo
17.
Mol Biol Evol ; 37(11): 3353-3362, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32895716

RESUMO

There are known limitations in methods of detecting positive selection. Common methods do not enable differentiation between positive selection and compensatory covariation, a major limitation. Further, the traditional method of calculating the ratio of nonsynonymous to synonymous substitutions (dN/dS) does not take into account the 3D structure of biomacromolecules nor differences between amino acids. It also does not account for saturation of synonymous mutations (dS) over long evolutionary time that renders codon-based methods ineffective for older divergences. This work aims to address these shortcomings for detecting positive selection through the development of a statistical model that examines clusters of substitutions in clusters of variable radii. Additionally, it uses a parametric bootstrapping approach to differentiate positive selection from compensatory processes. A previously reported case of positive selection in the leptin protein of primates was reexamined using this methodology.


Assuntos
Evolução Molecular , Modelos Estatísticos , Conformação Proteica , Seleção Genética , Mutação Silenciosa , Animais , Leptina/genética , Primatas/genética , Software
18.
Nucleic Acids Res ; 48(16): 9135-9146, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32735676

RESUMO

Microcephalin 1 (MCPH1) was identified from genetic mutations in patients with primary autosomal recessive microcephaly. In response to DNA double-strand breaks (DSBs), MCPH1 forms damage-induced foci and recruits BRCA2-RAD51 complex, a key component of the DSB repair machinery for homologous recombination (HR), to damage sites. Accordingly, the efficiency of HR is significantly attenuated upon depletion of MCPH1. The biochemical characteristics of MCPH1 and its functional interaction with the HR machinery had remained unclear due to lack of highly purified MCPH1 recombinant protein for functional study. Here, we established a mammalian expression system to express and purify MCPH1 protein. We show that MCPH1 is a bona fide DNA-binding protein and provide direct biochemical analysis of this MCPH family protein. Furthermore, we reveal that MCPH1 directly interacts with RAD51 at multiple contact points, providing evidence for how MCPH1 physically engages with the HR machinery. Importantly, we demonstrate that MCPH1 enhances the stability of RAD51 on single-strand DNA, a prerequisite step for RAD51-mediated recombination. Single-molecule tethered particle motion analysis showed a ∼2-fold increase in the lifetime of RAD51-ssDNA filaments in the presence of MCPH1. Thus, our study demonstrates direct crosstalk between microcephaly protein MCPH1 and the recombination component RAD51 for DSB repair.


Assuntos
Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Microcefalia/genética , Rad51 Recombinase/genética , Citoesqueleto/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Humanos , Microcefalia/patologia , Nucleoproteínas/genética
19.
Proc Natl Acad Sci U S A ; 117(21): 11257-11264, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404423

RESUMO

Dmc1 recombinases are essential to homologous recombination in meiosis. Here, we studied the kinetics of the nucleoprotein filament assembly of Saccharomyces cerevisiae Dmc1 using single-molecule tethered particle motion experiments and in vitro biochemical assay. ScDmc1 nucleoprotein filaments are less stable than the ScRad51 ones because of the kinetically much reduced nucleation step. The lower nucleation rate of ScDmc1 results from its lower single-stranded DNA (ssDNA) affinity, compared to that of ScRad51. Surprisingly, ScDmc1 nucleates mostly on the DNA structure containing the single-stranded and duplex DNA junction with the allowed extension in the 5'-to-3' polarity, while ScRad51 nucleation depends strongly on ssDNA lengths. This nucleation preference is also conserved for mammalian RAD51 and DMC1. In addition, ScDmc1 nucleation can be stimulated by short ScRad51 patches, but not by EcRecA ones. Pull-down experiments also confirm the physical interactions of ScDmc1 with ScRad51 in solution, but not with EcRecA. Our results are consistent with a model that Dmc1 nucleation can be facilitated by a structural component (such as DNA junction and protein-protein interaction) and DNA polarity. They provide direct evidence of how Rad51 is required for meiotic recombination and highlight a regulation strategy in Dmc1 nucleoprotein filament assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Rad51 Recombinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Citoesqueleto/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Nucleoproteínas/metabolismo , Rad51 Recombinase/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Imagem Individual de Molécula/métodos
20.
Nat Commun ; 10(1): 65, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622262

RESUMO

Polyamines, often elevated in cancer cells, have been shown to promote cell growth and proliferation. Whether polyamines regulate other cell functions remains unclear. Here, we explore whether and how polyamines affect genome integrity. When DNA double-strand break (DSB) is induced in hair follicles by ionizing radiation, reduction of cellular polyamines augments dystrophic changes with delayed regeneration. Mechanistically, polyamines facilitate homologous recombination-mediated DSB repair without affecting repair via non-homologous DNA end-joining and single-strand DNA annealing. Biochemical reconstitution and functional analyses demonstrate that polyamines enhance the DNA strand exchange activity of RAD51 recombinase. The effect of polyamines on RAD51 stems from their ability to enhance the capture of homologous duplex DNA and synaptic complex formation by the RAD51-ssDNA nucleoprotein filament. Our work demonstrates a novel function of polyamines in the maintenance of genome integrity via homology-directed DNA repair.


Assuntos
Poliaminas/metabolismo , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação/fisiologia , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/fisiologia , DNA de Cadeia Simples/metabolismo , Feminino , Raios gama/efeitos adversos , Células HEK293 , Folículo Piloso/metabolismo , Folículo Piloso/efeitos da radiação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/farmacologia , Inibidores da Ornitina Descarboxilase , Ftalazinas/farmacologia , Piperazinas/farmacologia , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...